M ar 2 00 9 Serre ’ s Uniformity Problem in the Split Cartan

نویسندگان

  • Yuri Bilu
  • Pierre Parent
چکیده

We prove that there exists an integer p0 such that X split (p)(Q) is made of cusps and CM-points for any prime p > p0. Equivalently, for any non-CM elliptic curve E over Q and any prime p > p0 the image of Gal(¯ Q/Q) by the representation induced by the Galois action on the p-division points of E is not contained in the normalizer of a split Cartan subgroup. This gives a partial answer to an old question of Serre.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 A ug 2 00 8 Serre ’ s Uniformity Problem in the Split Cartan Case

We prove that there exists an integer p0 such that X split (p)(Q) is made of cusps and CM-points for any prime p > p0. Equivalently, for any non-CM elliptic curve E over Q and any prime p > p0 the image of the representation of Gal(¯ Q/Q) induced by the Galois action on the p-division points of E is not contained in the normalizer of a split Cartan subgroup. This gives a partial answer to an ol...

متن کامل

3 0 Ju l 2 00 8 Serre ’ s Uniformity in the Split Cartan Case

We prove that there exists an integer p0 such that X split (p)(Q) is made of cusps and CM-points for any prime p > p0. Equivalently, for any non-CM elliptic curve E over Q and any prime p > p0 the image of the Galois representation ρE,p is not contained in the normalizer of a split Cartan subgroup. This gives a partial answer to an old question of Serre.

متن کامل

ar X iv : m at h . R T / 0 11 13 06 v 1 2 9 N ov 2 00 1 CARTAN DETERMINANTS AND SHAPOVALOV FORMS

We compute the determinant of the Gram matrix of the Shapovalov form on weight spaces of the basic representation of an affine Kac-Moody algebra of ADE type (possibly twisted). As a consequence, we obtain explicit formulae for the determinants of the Cartan matrices of p-blocks of the symmetric group and its double cover, and of the associated Hecke algebras at roots of unity.

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

2 00 1 Noetherian hereditary abelian categories satisfying Serre duality

In this paper we classify Ext-finite noetherian hereditary abelian categories over an algebraically closed field k satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary abelian categories. As a side result we show that when our hereditary abelian categories have no nonzero projectives or injectives, then the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009